Mixed Reality Collaboration between Human-Agent Teams

Thai Phan*
USC Institute for Creative Technologies

ABSTRACT

Collaboration between two or more geographically dispersed teams
has applications in research and training. In many cases special-
ized devices, such as robots, may need to be combined between the
collaborating groups. However, it would be expensive or even im-
possible to collocate them at a single physical location. We describe
the design of a mixed reality test bed which allows dispersed hu-
mans and physically embodied agents to collaborate within a single
virtual environment. We demonstrate our approach using Unity’s
networking architecture as well as open source robot software and
hardware. In our scenario, a total of 3 humans and 6 drones must
move through a narrow doorway while avoiding collisions in the
physical spaces as well as virtual space.

Index Terms: Human-centered computing— Virtual reality; Com-
puter systems organization—Robotic autonomy

1 INTRODUCTION

Simulations can test complex systems before they are conceived,
but most are not conducive towards multiuser collaboration. There
is a need for a simulation test bed that allows multiple labs to con-
duct research cooperatively without the transportation of specialized
equipment and resources between locations. We combine two ideas
to simplify the collaboration of humans and physical entities, even
when geographically dispersed: synthetic prototyping and mixed
reality. Early synthetic prototyping [3] demonstrated that it is possi-
ble to use a game engine to play and interact with vehicle dynamics
in a driving simulator, without the support of additional physical
entities. Mixed reality has been used to test interactions between
quadrotor drones and virtual humans [1]. We propose a mixed reality
approach that uses the Unity 3D game engine to construct a virtual
environment that combines multiple physical locations containing
physically embodied entities such as humans and robots. Humans
wear VR headsets to perceive other physical and virtual entities. We
demonstrate our approach in a collaborative scenario, where humans,
collocated in two physical locations, have to move through a narrow
doorway. They are followed by autonomous drones and all entities
must avoid physical and virtual obstacles while moving.

2 SYSTEM DESCRIPTION

‘We consider two physical spaces, one with 2 users and 4 drones and
the other with 1 user and 2 drones. One physical space has a physical
door, while the other does not (see Fig. 1). Users in both physical
spaces wear a Samsung Gear VR headset and are in the same virtual
environment (VE) with the same door represented virtually. Each
user has a pair of drones following in a simple line formation. The
VE also contains virtual obstacles such as walls, human avatars, and
representations of the drones. As each user passes through the open
door, the drones must break formation in order to pass through also.

For motion tracking, one space uses PhaseSpace and the other
uses VICON. The major system components are outlined in Fig. 2.

*e-mail: tphan@ict.usc.edu
fe-mail: {whoenig, ayanian} @usc.edu

Wolfgang Honig"
University of Southern California

Nora Ayanian’
University of Southern California

Figure 1: Left: Location A with physical door using PhaseSpace
tracking. Right: Location B using VICON tracking.

oo T oo
(@) ()
ROS Wireless Wireless Wireless ROS
BaseStation A) (Unity Client Alj [Unity Client nity Client Bl) | BaseStation B

N WAN

PhaseSpace Unity Unity
Server Client A ) | Server )

Location A

Location B

Figure 2: System diagram. Location A has 2 humans and 4 drones,
while location B has 1 human and 2 drones. Humans and drones are
tracked using PhaseSpace and VICON, respectively, and their poses
are shared with the Unity Server.

We use Unity for the server and clients, for rendering, path finding,
and state synchronization. We use the Crazyswarm stack [2] to
control the flight of Bitcraze Crazyflie 2.0 quadcopters. Each of the
two locations uses a computer (base station) running ROS (Robot
Operating System). ROS BaseStation A commands 4 Crazyflies
while BaseStation B commands 2 Crazyflies. All VR headsets act
as Wireless Unity Clients which connect to the the Unity Server.

2.1 Network Design

An intracampus WAN allows our two tracking volumes to connect
to each other with minimal number of hops. We implement a server-
client architecture using the Unity game engine’s High Level API
(HLAPI). Unity also provides a Low Level API (LLAPI), both of
which are built on top of a transport layer, which uses UDP packets!.
The HLAPI suits our needs because it provides the core network
components necessary to allow Unity clients to relay data to each
other through the Unity server. One computer runs the Unity Server
and Unity Client A in a single process. Unity Client A receives pose
information of the PhaseSpace motion-tracked users and drones on
its local LAN. It also receives pose information of all other users
and drones via the Unity Server. Unity Client B receives pose
information of the VICON motion-tracked users and drones on its
LAN. It in turn receives pose information of the PhaseSpace-tracked
users and drones via the Unity Server.

The Wireless Unity Clients only receive pose information for all
users and drones in order to render their correct placement inside

ISee https://docs.unity3d.com/Manual/UNetUsing Transport.html


https://docs.unity3d.com/Manual/UNetUsingTransport.html

the VE. They do not transmit user data or input to the Unity Server.
Both Unity Client A and B process the pose information locally.
The Unity Server itself does not process the pose information as it
simply updates all clients with the most current information.

For closed-loop control, Unity Client A sends a new goal position
for each drone (at a rate of 10 Hz) via a Python TCP socket connec-
tion to ROS BaseStation A. Likewise, Unity Client B sends goal
data to ROS BaseStation B. Both base stations communicate and
command drones via a custom RF radio on the 2.4 GHz band and
not through 802.11 WiFi. Wireless Unity Clients communicate on
IEEE 802.11ac to reduce congestion on the 2.4 GHz band.

2.2 Motion Tracking

All of the Gear VR headsets are outfitted with unique marker arrange-
ments for 6DoF tracking; using PhaseSpace active LED markers or
VICON passive retro-reflective markers. The 4 drones tracked by
PhaseSpace are modified to carry a PhaseSpace microdriver with
2 tracking LEDs, drawing 3.7V from the drone’s battery. Unity
Client A only receives partial pose data from these drones — their
yaw and position. The 2 drones tracked by VICON are outfitted with
small spherical markers adhered directly to the frame. The marker
arrangements are unique, so Unity Client B receives full 6DoF pose
data. Unity Client A uses the PhaseSpace SDK, while Unity Client
B connects to VICON’s integrated VRPN server. Data is unbuffered
and only the most recent data is used.

2.3 Drone System

The Crazyflie 2.0 hardware and software is open-source. Using the
Crazyswarm architecture [2], the majority of in-flight computation is
done on the Crazyflie’s 32-bit, 168 MHz ARM microcontroller. The
two ROS base stations transmit the pose and goal positions to the
drones over 2.4 GHz radio, at a broadcast rate of 100 Hz and 10 Hz,
respectively. An onboard Extended Kalman Filter (EKF) fuses pose
data from the tracking system with data from the Crazyflie’s IMU.
Trajectory planning and control is done on-board.

2.4 Agent Navigation

Unity Clients A & B calculate the paths for the drones by represent-
ing each one as an agent inside the virtual environment. Unity’s
navigation system uses the A* search algorithm?. This provides
suitable reactive planning to avoid collisions with users, obstacles,
and other agents. It also simplifies the maneuvers of the drones for
the purpose of flying in close proximity with humans, each having
an invisible 0.5 m radius boundary against collisions.

Unity generates a navigation mesh (NavMesh) for the environ-
ment in which paths for agents will be calculated on a 2D plane.
Paths change as dynamic obstacles such as users, the door, and other
agents cause obstructions. When an agent has no available path to
reach a goal position, the agent stops moving until an obstruction is
moved or a new path becomes available.

Unity Clients A & B will have identical local copies of the
NavMesh, but will calculate paths independent of each other. If
one of the client’s network connection is interrupted, the other client
will calculate paths using the most recent pose information reported
by the Unity server. No client-side prediction is performed. Finally,
invisible boundaries surrounding the VE prevent drones in both
tracking volumes from flying into untrackable areas.

2.5 Mixed Reality Design

The physical door (2040 mm x 920 mm) is also tracked with Phase-
Space markers (see Fig. 1). As the door opens and closes, its virtual
representation moves accordingly. One user wears a hand strap
with PhaseSpace markers. When this user reaches for the doorknob,
others see his/her avatar reach accordingly inside the VE. We are

2See https://docs.unity3d.com/Manual/nav-InnerWorkings.html

Figure 3: Overhead view of 3 users and 6 agents in total, sharing the
same virtual environment.

also using an off-the-shelf solution for inverse kinematics (by Root-
Motion?) to animate avatars as they locomote. A screenshot of the
VE (as rendered in the Unity Clients) is shown in Fig. 3.

The Wireless Unity Clients run on Samsung Galaxy S7 phones.
Each client renders a stereoscopic view without distortion correction
using a simplified rendering pipeline to prevent the phones from
overheating. In order to give users improved spatial awareness, a
HUD was designed to present them with an overhead view of their
surroundings, indicating the location of other agents and users.

3 DiIscuUsSION AND FUTURE WORK

Unity has been the de facto rendering engine for VR research applica-
tions in recent years. We have shown that its multiplayer networking
and Al architecture can facilitate mixed reality collaboration be-
tween human-agent teams. Using our approach, a wide variety of
physical spaces can be interconnected for collaboration. Humans
can work safely within their own physical confines, while their in-
telligent counterparts can operate in more hazardous environments.
This also enables the testing of heterogeneous human-agent teams.
For example, UAVs might operate in a facility equipped to simulate
air turbulence, while anthropomorphic robots might operate in a
mock disaster zone. Our approach is also well suited for mixed
reality prototyping since we will be able to substitute networking
and Al components with alternative implementations. Path finding
can be undertaken by an external system or onboard the drones
themselves. Optical motion tracking can gradually shift towards
decentralized localization using onboard sensors. In these cases,
peer-to-peer networking can better simulate intercommunication be-
tween drones. We believe that our test bed will help the development
of human-agent interactions and will serve to acclimate end users
with autonomous systems.

ACKNOWLEDGMENTS

This work was sponsored, in whole or in part, by the U.S. Army
Research Laboratory (ARL) under contract number W911F-14-D-
0005. Statements, expressed opinions, and content included do not
necessarily reflect the position or the policy of the United States
Government, and no official endorsement should be inferred.

REFERENCES

[1] W. Honig, C. Milanes, L. Scaria, T. Phan, M. Bolas, and N. Ayanian.
Mixed reality for robotics. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 5382-5387, 2015.

[2] J. A.Preiss*, W. Honig*, G. S. Sukhatme, and N. Ayanian. Crazyswarm:
A large nano-quadcopter swarm. In IEEE International Conference
on Robotics and Automation (ICRA), pp. 3299-3304, 2017. Software
available at https://github.com/USC- ACTLab/crazyswarm.

[3] R. Spicer, E. Evangelista, R. New, J. Campbell, T. Richmond, C. Mc-
Groarty, and B. Vogt. Innovation and Rapid Evolutionary Design by
Virtual Doing: Understanding Early Synthetic Prototyping. In Proceed-
ing of Simulation Interoperability Workshop, 2015.

3See http://root-motion.com/


https://docs.unity3d.com/Manual/nav-InnerWorkings.html
https://github.com/USC-ACTLab/crazyswarm
http://root-motion.com/

	Introduction
	System Description
	Network Design
	Motion Tracking
	Drone System
	Agent Navigation
	Mixed Reality Design

	Discussion and Future Work

